
Abstract. In this paper, the second of a series devoted to
multi-reference perturbation CI, we tackle the problem
of the appropriate selection of the zero-order space in
CIPSI calculations. We propose a new selection proce-
dure, explicitly devised in order to obtain a balanced
description for di�erent electronic states and nuclear
geometries. To this aim, we de®ne numerically the
quality of the zero-order space by means of a suitable
parameter r, which is the square norm of the pertur-
bative correction of the wavefunction. The zero-order
space is expanded stepwise so as to obtain the same
target r for all states and geometries. This strategy is
applied to the calculation of dissociation, activation and
transition energies. It yields a much better convergence
of perturbative and zero-order results, when compared
with the selection procedure previously used.

Key words: Multi-reference CI ± Perturbation CI ±
CIPSI

1 Introduction

Multi-reference perturbation CI methods are among the
most powerful, general purpose tools for the investiga-
tion of energies and properties of electronic states (see
Malrieu et al. for a recent review [1]). All of them are
based on the de®nition of an appropriate zero-order CI
subspace S, which contains the most important Slater
determinants or con®gurations for the description of the
electronic states of interest. The methods proposed in the
past and those currently employed di�er as to important
choices, such as the order of application of variational
and perturbation theory. The option ``perturbation ®rst''
implies the use of quasi degenerate perturbation theory
(QDPT) in the basis of the determinants belonging toS
(``uncontracted'' procedure). It leads to the de®nition of

intermediate Hamiltonians [2], a generalization of the
concept of e�ective Hamiltonians (see also Malrieu et al.
[3] for further developments).

The option ``diagonalization ®rst'' involves compu-
tation of the eigenvectors of the CI Hamiltonian pro-
jected into the S subspace and perturbation of only a
few of the zero-order wave functions thus obtained,
corresponding to the electronic states of interest (``con-
tracted'' procedure). Examples of the latter strategy are
the CIPSI [4] and the CASPT2 [5] algorithms, both
based on second-order perturbation theory. The con-
traction of the zero-order wave functions has an ad-
vantage, in that a substantial energy gap is introduced
between the target states and the perturbers. However,
the simplest, state-by-state, applications of this strategy
do not allow for the mixing of the states belonging toS,
under the in¯uence of the interaction with outer con-
®gurations. This may be important in cases of quasi-
degeneracy, such as avoided crossings and conical in-
tersections. Such a problem can be solved to a large
extent by a QDPT treatment in the basis of the zero-
order target states [6], which is an option in our imple-
mentation of the method [7].

In CIPSI the determinants belonging to S are indi-
vidually selected by means of an iterative procedure,
while in CASPT2,S is a complete active space, i.e. a full
CI space in a restricted set of molecular orbitals (MOs).
Other strategies may be applied, for instance selecting
con®gurations according to the class of excitation with
respect to a reference wave function [8].

In all cases, the appropriate choice of theS subspace
is crucial, because it determines the accuracy of the
perturbation corrections. The basic requirement is that
the quality ofS should be uniform throughout the set of
electronic states and the range of molecular geometries
under consideration. None of the procedures mentioned
above are explicitly devised to meet such a requirement,
even those endowed with the important formal property
of size consistency [1, 9, 10], for instance, CASPT2 [5] or
e�ective Hamiltonian-based methods [3].

In this paper we propose a simple and automatic
procedure to select S with a uniform quality, suitably
de®ned as a numerical parameter, within the CIPSI
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method. Test calculations show the e�ectiveness of the
new procedure in calculating dissociation, activation and
excitation energies.

2 Method

The CIPSI method was reviewed in the ®rst paper of this
series [11] (see also Cimiraglia and Persico [7]). It rests on
a partition of the CI Hamiltonian, usually according to
the Epstein-Nesbet (EN) or Mùller-Plesset baricentric
(MPB) schemes:

Ĥ � Ĥ0 � V̂ : �1�
The second-order Rayleigh-SchroÈ dinger perturbation
theory is applied to the eigenstates of Ĥ0 in the S
subspace; in the EN partition:

Ĥ0 W�0�m

�� E
� E�MR�

m W�0�m

�� E
: �2�

Here E�MR�
m is the multi-reference zero-order energy of

the m-th electronic state. The second-order correction to
the energy is

E�2�m � ÿ
X
I2P

I V̂
�� ��W�0�m

D E2
EI ÿ E�MR�

m

�3�

and the ®rst-order correction to the wave function is

W�1�m

�� E
�
X
I2P

CI ;m Ij i ; �4�

with coe�cients

CI ;m � ÿ
I V̂
�� ��W�0�m

D E
EI ÿ E�MR�

m

: �5�

Here Ij i is a determinant belonging to the space P of all
single and double excitations from determinants of S
and EI , its energy: higher classes of excitation do not
contribute until the fourth-order. The total energies are
the sum of zero- and second-order terms, E�MR�

m � E�2�m .

The M�ller-Plesset formulae only di�er in the denom-

inators [4, 7, 11].

2.1 Selection based on wave function
or energy thresholds

Two sources of error a�ect the results: one is the
truncation of the total CI space considered, S [P; the
other one is the use of second-order perturbation
formulae instead of an exact diagonalization. A selective
enlargement of theS subspace may reduce both sources
of error. In the CIPSI algorithm, this is done iteratively,
usually starting with an S subspace of a few determi-
nants. At each step, the largest coe�cients CI ;m in the
®rst-order correction of the wave functions are identi-
®ed, and the corresponding determinants Ij i are includ-
ed in the enlarged S space for the next calculation. We
shall call M the subset of newly selected determinants,
and S0 � S [M the new zero-order space. In this way,

the most important contributions to the correlation
energy are taken into account by diagonalization in the
next step. Moreover, the total CI space is expanded by
addition of the subspace P000, made of all single and
double excitations with respect to M, which could not
be generated from S in the previous step. The new
perturbation space is thus P0 � P00 [P000, with P00 �
PÿM (see Fig. 1).

A strategy which has been applied over the past
several years consists of setting a threshold g�n� for the
selection of determinants at step n: then, all Ij i 2 P with
CI ;m

�� �� � g�n� C�max�m

�� �� for at least one state m are included
in the zero-order space S0 in the next step, n� 1. C�max�m
is the largest coe�cient in the zero-order eigenfunction
of step n, W�0;n�m . The modi®cation of the threshold by the
factor C�max�m

�� �� introduces a state-by-state adaptation to
the type of wave function expansion in the determinantal
basis. This is done in order to select equivalent subspaces
S for states whose dominant con®gurations di�er in the
number of open shells and associated determinants. The
g�n� threshold is lowered step by step, and theS space is
correspondingly expanded, in principle, until the desired
accuracy of the computed properties is obtained. In the
following, we shall call this procedure, based on the
contributions to the ®rst-order wave function,
W-selection.

In practice, the computer facilities available may limit
the dimension of the S space, NS, and the number of
correlated electrons, Ne. However, the standard of com-
putation has increased over the years, as a result of
methodological advances [11±13] and better hardware
performance. Typical examples may be found in appli-
cative works [14±17]. As more experience about the
convergence properties of the CIPSI algorithm with
larger NS and Ne has accumulated, we have found that
W-selection may yield markedly di�erent slopes of
energy versus g plots, for various electronic states or
nuclear geometries. The unbalanced selection leads to
errors in dissociation and activation or transition ener-
gies, unless the full CI limit is approached. Examples will
be given in Sect. 3. Notice that similar problems may be
met with CASPT2, as in the study [5] of the dissociation
energy of N2.

An alternative to W-selection is the analogous pro-
cedure based on the contributions to the energies E�2�m�E-selection�. In this case, the appropriate factor which
multiplies the energy threshold h�n� is �C�max�m �2: all

determinants
��I� with ��
I��V̂��W�0�m

�2
=�EI ÿ E�MR�

m ��� > h�n�

�C�max�m �2 are selected and included in S for the next

Fig. 1. Partition of the CI space in two successive CIPSI steps
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calculation. A con®guration selection based on energetic
contributions is the standard in multireference single and
double excitation CI (MRD-CI) [18, 19]. As we shall see
in Sect. 3, E-selection su�ers from the same problems as
W-selection.

2.2 Aimed selection

A good measure of the quality of perturbation CI
calculations is the square norm of the ®rst-order
correction to the wave function:

rm �
X
I2P

C2
I ;m �

X
I2P

I V̂
�� ��W�0�m

D E2
ÿ
EI ÿ E�MR�

m
�2 : �6�

If large interactions


I
��V̂��W�0�m

�
and/or small denomina-

tors EI ÿ E�MR�
m occur in Eqs. (3) and (6), the results are

not accurate, and rm is correspondingly large. When the
S space is extended, the most important contributions
in Eq. (6) are eliminated; therefore rm usually decreases,
although new terms involving determinants Ij i 2 P000 are
added. We also recall that rm, or related parameters,
play a central role in all attempts to de®ne size-
extensivity corrections to MRD-CI methods [10]. In
the examples shown in Sect. 3, we shall see that the
W-selection procedure may lead to quite di�erent r
values, e.g. for a molecule in its equilibrium geometry
and for two dissociated fragments. The same happens
with E-selection.

These observations have prompted us to devise an
algorithm to select the S space so as to obtain a preset
value of r for all states and nuclear geometries. A
slightly weaker requirement is that all rm values should
be the same, although not equal to a target value. We
shall call such a procedure ``aimed selection''. In order to
set up an aimed selection, we must be able to predict the
r value we would obtain at the step n� 1 of a CIPSI
calculation, from the results of the step n, at least with
some approximation.

In the following, for simplicity, we shall drop the state
subscript m, if not strictly needed, and we shall add in-
stead an index n or n� 1 to distinguish the quantities
computed at two subsequent steps. The theory applies to
the EN perturbation results, because of the relationship
we want to establish between diagonal energies and de-
nominators in the perturbation formulae, Eqs. (10±13).
Let us de®ne the normalized ®rst-order wave function
�r�n��ÿ1=2W�1;n�. We shall call V its interaction with W�0�:

V � �r�n��ÿ1=2 W�0;n� V̂
�� ��W�1;n�D E

: �7�

From the relationship between W�1� and E�2�,

E�2;n� � W�0;n� V̂
�� ��W�1;n�D E

�8�
we get:

V 2 � �E
�2;n��2
r�n�

: �9�

The average energy associated with W�1;n�, taking E�MR;n�
as a reference, is D:

D � �r�n��ÿ1 W�1;n� Ĥ
�� ��W�1;n�D E

ÿ E�MR;n� : �10�
If we consider �r�n��ÿ1=2W�1� as a single basis function, we
can approximate the second-order energy correction as:

E�2;n� � ÿ V 2

D
: �11�

Then:

D � ÿE�2;n�

r�n�
: �12�

Equations (9) and (12) allow us to compute the two
parameters V 2 and D from the perturbation results E�2;n�
and r�n�. Notice that one obtains formally the same
formulae with the approximation that all denominators
are equal in Eqs. (3) and (6). We can similarly treat the

partial results E�2;n�M and r�n�M , which are obtained by

taking into account only determinants Ij i 2M in

Eqs. (3) and (6). We shall call V 2
M � �E�2;n�M �2=r�n�M and

DM � ÿE�2;n�M =r�n�M the parameters referring to the M

subspace, while V 2 and D belong to the full P space.
In the next step, n� 1, the CI matrix in the space

S0 � S [M will be diagonalized. We shall consider as
basis functions W�0;n� and WM (the normalized projection
of W�1;n� intoM), i.e. we shall neglect the inner ¯exibility
of theS andM determinantal basis sets. It is clear that,
in this attempt to predict the results of the step n� 1, we
cannot take into account the interactions between
determinants of P, which are never computed in step n.
With this approximation, the CI matrix reduces to:

E�MR;n� VM
VM E�MR;n� � DM

� �
: �13�

The lowest eigenvalue of this matrix approximates the
zero-order energy at step n� 1:

E�MR;n�1� � E�MR;n� ÿ
����������������������
D2
M � 4V 2

M

q
ÿ DM

2

� E�MR;n� � E�2;n�M f r�n�M
� �

; �14�
where f �x� is the function

f �x� �
�������������
1� 4x
p ÿ 1

2x
' 1ÿ x : �15�

The corresponding eigenstate is:

W�0;n�1�
�� E

� �1� C2
M�ÿ1=2 W�0;n�

�� E
� CM WM

��� E� �
; �16�

where

C2
M � r�n�M f 2 r�n�M

� �
: �17�

At step n� 1, the perturbation involves two subspaces,
P00 and P000 (see Fig. 1). We consider ®rst the normalized
projection of W�1;n� into P00. Its interaction with W�0;n�,
V 2
P00 , and the e�ective energy, DP00 , can be computed
again from the results at step n, taking into account only
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the terms due to determinants Ij i 62M in Eqs. (3) and
(6). We then get:

V 2
P00 �

�E�2;n� ÿ E�2;n�M �2
r�n� ÿ r�n�M

; �18�

DP00 � ÿ
E�2;n� ÿ E�2;n�M

r�n� ÿ r�n�M
: �19�

The P00 contribution to the square norm of the wave
function correction r�n�1� in the CIPSI step n� 1 is:

r�n�1�
P00 � V 2

P00

�1� C2
M� DP00 ÿ E�2;n�M f �r�n�M �
h i2 : �20�

Here we have taken into account the normalization of
wave function (16), which reduces the e�ective interac-
tion by a factor 1=�1� C2

M�, and the lowering of the
reference energy, Eq. (14).

For the P000 subspace we have no direct information
from the n-th calculation; therefore, we must resort to an
``educated guess'' as to its contribution in step n� 1. We
notice that the determinants in P000 only interact with
those of M, so we assume that the interaction between
P000 and S0 is the same as between P and S, but for a
factor C2

M=�1� C2
M�. The e�ective energy parameter

DP000 is computed as DP00 , considering the hypothesis that

r�n�M � r�n�=2. That is, we assume that the average energy
of determinants of P000 is the same as in the upper half

of P00. In this way, the P000 contribution to r�n�1� is
estimated as:

r�n�1�
P000 �

V 2 C2
M

�1� C2
M� DP000 ÿ E�2;n�M f

ÿ
r�n�M
�h i2 : �21�

The total square norm of the ®rst-order correction is
predicted, at step n� 1, to be:

r�n�1� � r�n�1�
P00 � r�n�1�

P000 : �22�
Normally r�n�M is a rather small fraction of r because

we select a moderate number of determinants from the

P space at each step: the r�n�1�
P00 contribution is then more

important than r�n�1�
P000

and the approximations made in

evaluating the latter should be quite acceptable. In the

limiting case where M is empty, r�n�1�
P000 vanishes and

r�n�1�
P00 � r�n�. In the opposite case, that is including the

whole P space in S0, we have r�n�1�
P00 � 0. Therefore, the

quantity r�n�1�
P000 computed with r�n�M � r�n� is an estimate

of the smallest r�n�1� value we can obtain in step n� 1,
with the maximum extension of the S0 space:

r�n�1�min �
V 2 r�n� f 2�r�n��

�1� r�n�f 2�r�n��� DP000 ÿ E�2;n�f �r�n��� �2
: �23�

The aimed selection scheme is then implemented as
follows:

1. Perform the CIPSI step n; write a ®le containing
the most important determinants and their contributions
to E�2;n�m and r�n�m .

2. Set a target value r�t� for r�n�1�.
3. At the beginning theM space is empty but it will be

incremented in steps 4 and 5.
4. Compute r�n�1�m for each state m, according to the

updated de®nition of theM space, and compare it with
the target. If r�n�1�m < r�t� for all states, the selection
procedure ends; otherwise, the state m0 with the largest
r�n�1�m is singled out.

5. Increase the M space with the determinant Ij i
yielding the largest contribution to r�n�m0 .

6. Go back to point 4.

A variant of point 5 is optionally active, if one desires to
include in S0 the determinants with a given MO
occupation and all possible spin functions, in order to
produce eigenstates of S2 in the next step. In this case,
all the contributions to E�2;n� and r�n� of the required
determinants are taken into account in the selection
algorithm (``pure-spin'' option). The aimed selection
procedure is much faster than the corresponding per-
turbation CI calculation. The most demanding step is
the evaluation of DP000 , which can be avoided if one

neglects the r�n�1�
P000 contribution to r�n�1�. We shall see

examples of both options in Sect. 3.
A further simpli®cation of Eqs. (17±20) is obtained by

neglecting terms of second or higher order in r�n�, and
the energy lowering due to the enlargement of the S
space. The consequent loss in accuracy has been found
negligible in several examples, probably because of a
cancellation of errors. The resulting formula is:

r�n�1�
P00 � r�n� ÿ r�n�M

� �
1ÿ r�n�M
� �

: �24�
In summary, we have illustrated three options, from the

simplest to the most elaborate: option 1, r�n�1� � r�n�1�
P00

is computed by Eq. (24); option 2, r�n�1� � r�n�1�
P00 ,

Eqs. (17±20); option 3, also adds the r�n�1�
P000 contribution

in Eqs. (17±22).
Other options are available, based on an improved

evaluation of r�n�1�
P00 , with a little extra cost in the CIPSI

calculation. We notice that Eq. (20) contains the un-
necessary approximation of neglecting the inner ¯exi-
bility of the projection of W�1;n� into P00. In fact, it is easy
to compute the e�ect of any variation of the reference
energy E�MR� on the value of r and on the most impor-
tant single determinant contributions to it, without
approximations. We only need to apply a suitable set of
shifts DE1 . . . DEk . . . to the reference energy at the CIPSI
step n, and store the results obtained with the altered
denominators EI ÿ E�MR;n� � DEk. By interpolation, the
results are available as functions of the energy shift. In
the selection procedure, for a given composition of the
subspace M, we evaluate the lowering of E�MR;n�1� with
respect to E�MR;n� through Eq. (14); then we obtain the

corresponding energy shifted r�n� and r�n�M and, by dif-

ference, r�n�
P00 . The latter, divided by the renormalization

factor �1� C2
M�, yields r�n�1�

P00 .
The selection procedure based on Eqs. (17±20) and

the more re®ned one, outlined above, have been
compared in several test cases. The results are very
similar, showing that the ``rigid W�1;n�'' approximation
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is su�ciently accurate. In the next section, we shall
present results based on options 1±3 only.

3 Test calculations

Test calculations on a few molecular systems of realistic
size have been performed in order to show the advan-
tages of the aimed selection, namely a faster and more
stable convergence of the computed energy di�erences,
and a better agreement between variational (zero-order)
and perturbative (second-order) results. The processes
we have considered involve single-, double- or triple-
bond dissociations, double-bond twisting and electronic
excitations.

E�2� and r can be computed by means of the very fast
diagrammatic algorithm (CIPDIAGR) [12, 13], made
even more e�cient by the extrapolation procedure de-
scribed in the ®rst paper of this series [11]. However, for
the selection of the S space we still resort to the older
program (CIPPI, CIPSI-Pisa), which calculates the sin-
gle-determinant contributions. Therefore, we normally
run a few CIPPI steps with S spaces of moderate size,
and we perform a CIPDIAGR calculation only for the
last and more demanding step. For the purpose of test-
ing, for example, in some of the studies presented in
Sect. 3, after the last CIPPI step we have performed
several selections of increasingly large S spaces and the
corresponding CIPDIAGR calculations.

3.1 Single-bond dissociation and n! p� excitation:
CH3NO and CH3N@NCH3

We have studied the C-N bond dissociation energy of two
small organic molecules, CH3NO (nitrosomethane) and
CH3N@NCH3 (trans-azomethane), and the S0 ÿ S1 ver-
tical transition energy in CH3NO. In both cases the basis
set was 6-31G�, i.e. split-valence with polarization
functions [20]. The MOs were obtained by diagonalizat-
ion of an average density matrix for the ®rst two singlet
states, after a CASSCF calculation (approximate natural
orbitals). For CH3NO, the CAS space involved 12
electrons and 8 MOs and for CH3N@NCH3, 6 electrons
and 6 MOs. The ground-state structures for the two
molecules and for the dissociated fragments were ob-
tained by state-speci®c CASSCF geometry optimizations
[11, 21].

Table 1 summarizes the results of CH3NO. Let us ®rst
consider the square norms of the ®rst-order wave function
corrections, rm, which are obtained with the di�erent se-
lection procedures. We ®nd that W-selection and
E-selection yield larger r values at the equilibrium ge-
ometry �req� than at dissociation �rdiss�. In Fig. 2 we show
a graphical comparison of the two values, req and rdiss, for
a sequence of several selection steps. For the n! p� ex-
cited state S1 we obtain rexc values not far from those of
the ground state at the same geometry. The aimed selec-
tion brings req, rdiss and rexc in good agreement already in
the ®rst steps, i.e. with smallS spaces (see Table 1).

As shown in Fig. 3, the complete Eq. (22) predicts
rather well the r values which will be obtained in the
next perturbation step. Neglecting the contribution of

the P000 space leads to sizeable errors when one drasti-
cally increases the dimension of the S space, NS,
starting with a calculation of moderate quality (``long
steps'' in the iterative selection). However, using this
approximation we still obtain a close agreement of the
three values req, rdiss and rexc, even if they cannot be
accurately programmed in advance.

These di�erences in the selection of theS spaces have
important e�ects on the computed energies. Figures 4
and 5 show the variation of the computed dissociation

Fig. 2. Comparison of the Epstein-Nesbet (EN) square norms of
the ®rst-order correction to the wave function in CIPSI calculations
for CH3NO �req� and CH3 �NO �rdiss�, obtained at di�erent steps
of three selection procedures

Fig. 3. Accuracy in the prediction of the EN square norms of the
®rst-order correction to the wave function in CIPSI calculations for
CH3NO (S0 and S1) states and CH3 �NO. Dashed lines contribu-
tions of both P00 and P000 subspaces (option 3, see text); dotted lines
P00 only (option 2)
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energy of CH3NO with increasing NS (see also Table 1).
The contrast between the W-selection and aimed selection
zero-order results is striking. The W-selection procedure
favours the dissociated fragments unduly, selecting too
many determinants (hence we get rdiss < req). As a result,
the variational or zero-order energy of the fragments
decreases faster than that of the undissociated molecule,
when expanding the S space. For selected spaces of
about 40� 4000 determinants at the equilibrium geom-
etry, the dissociation energy computed as a di�erence of
zero-order energies is very low, or even negative. Only for
the largest S spaces �NS ' 12 000� do we again get a
positive dissociation energy. The same problem is met
with E-selection, whereas this disappears almost com-
pletely when using aimed selection. It is then clear that
the zero-order wave functions and energies obtained with
aimed selection are a better starting point for the per-
turbation calculation. Actually, the dissociation energies
obtained after perturbation with all three selection pro-
cedures are acceptable.

However, the aimed selection results are much more
stable with respect to successive expansions of S and
show a better agreement between MPB and EN energies
for smaller S. They also get closer to the experimental
[22, 23] dissociation energy, 39� 40:3 kcal/mol. As may
be expected from the r values, the calculation of vertical
transition energies is less problematic. Also in this case,
however, the convergence of variational, MPB and EN
results is faster and more stable with aimed selection
than with W-selection or E-selection (see Table 1).

Notice that the dimension of S, which obviously de-
termines the computational e�ort, is not a good measure
of the quality of the calculation. In fact, all selection
procedures lead to large di�erences in NS according to
state and geometry; in particular, when equal r values are
required, i.e. with aimed selection, the generatedS spaces
are much smaller at dissociation than at the equilibrium
geometry.

The dissociation of CH3N@NCH3 into a methyl and
a methyldiazenyl radical produces the same kind of

Table 1. CIPSI results for CH3NO, C-N bond dissociation and S0
) S1 vertical excitation. The headings eq, diss and exc refer to the
ground state equilibrium geometry, the dissociated CH3 and NO

fragments, and the n! p� excited singlet, respectively. The heading
var refers to variational, i.e. zero-order results. Dissociation and
excitation energies are in kcal/mol

W-selection

g NS r, EN Dissociation energy Excitation energy

eq diss exc eq diss exc var EN MPB var EN MPB

± 3 3 2 0.3636 0.3204 0.3627 18.9 49.2 37.7 39.9 46.1 36.8
0.0450 15 13 24 0.1648 0.1763 0.1723 33.1 29.2 35.9 47.8 40.6 40.3
0.0180 38 251 126 0.1452 0.0935 0.1366 )22.1 49.3 36.6 36.3 46.8 41.7
0.0090 324 841 688 0.0977 0.0519 0.0949 )35.6 42.5 33.7 40.8 45.5 43.0
0.0060 807 1727 1672 0.0743 0.0331 0.0725 )40.9 36.9 31.4 41.2 44.5 43.8
0.0043 1533 2607 3270 0.0598 0.0241 0.0568 )37.7 35.5 32.5 39.4 44.7 43.3
0.0028 3423 4263 7078 0.0420 0.0169 0.0401 )22.2 33.7 33.1 40.4 44.3 43.3
0.0012 12364 9005 24654 0.0213 0.0109 0.0206 9.1 35.4 36.1 42.4 44.2 43.7

E-selection

h, NS r, EN Dissociation energy Excitation energy

millihartree eq diss exc eq diss exc var EN MPB var EN MPB

± 3 3 2 0.3636 0.3204 0.3627 18.9 49.2 37.7 39.9 46.1 36.8
2.0000 19 55 40 0.1812 0.1502 0.1614 13.6 43.1 39.7 42.8 47.7 43.9
0.7500 46 211 106 0.1440 0.0985 0.1399 )17.1 48.4 36.9 39.9 44.8 40.7
0.1800 344 1119 790 0.0967 0.0453 0.0919 )49.1 41.6 31.7 38.4 45.6 42.7
0.1000 769 1961 1640 0.0764 0.0309 0.0737 )48.9 37.4 31.2 40.2 44.8 42.7
0.0530 1558 3025 3346 0.0599 0.0220 0.0565 )40.6 34.8 31.9 39.2 44.8 43.2
0.0230 3655 4961 7604 0.0414 0.0154 0.0391 )21.9 33.6 33.4 40.4 44.4 43.4
0.0050 12450 9561 24776 0.0214 0.0108 0.0207 9.9 35.2 36.0 42.7 44.3 43.8

Aimed selection

r�t� NS r, EN Dissociation energy Excitation energy

eq diss exc eq diss exc var EN MPB var EN MPB

± 3 3 2 0.3636 0.3204 0.3627 18.9 49.2 37.7 39.9 46.1 36.8
0.1900 18 21 32 0.1623 0.1707 0.1663 31.9 30.5 36.6 46.0 41.8 40.4
0.1500 36 53 84 0.1468 0.1443 0.1447 26.1 34.2 37.1 42.2 44.4 41.2
0.1000 336 235 650 0.0967 0.0941 0.0958 28.8 36.7 40.4 43.0 44.7 42.9
0.0800 726 407 1396 0.0769 0.0757 0.0764 31.1 36.4 40.4 43.0 44.5 42.9
0.0600 1646 743 3120 0.0582 0.0561 0.0574 31.4 37.2 40.7 43.3 44.7 43.7
0.0400 4102 1435 7640 0.0386 0.0380 0.0383 33.7 36.0 40.0 43.7 44.4 43.7
0.0200 14623 3651 27046 0.0194 0.0189 0.0195 36.5 37.3 40.0 44.5 44.4 44.0
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problems. Figures 6 and 7 show the convergence of
variational, EN and MPB dissociation energies, with
aimed and W-selection, respectively. The decreasing
trend of the variational dissociation energy with
W-selection, and the better stability obtained with aimed
selection, parallel those of CH3NO. The computed r
values for CH3N@NCH3, in analogy with those of
CH3NO, also show the unbalance between equilibrium
geometry and dissociation which is characteristic of
W-selection. For the best calculations, we get req � 0:1520
and rdiss � 0:0964, while with aimed selection
req � 0:1418 and rdiss � 0:1421. Because more electrons
are correlated in CH3N@NCH3 than in CH3NO, gen-

erally larger values of r are obtained, and it would not
be practical to increase further the size of S when
computing potential energy surfaces [21]. This is the
reason why the results shown in Figs. 6 and 7 are less
close to convergence than those of CH3NO.

3.2 Double-bond twisting and dissociation: CH2 @ CH2

We have considered two ways of breaking the ethylene
double bond: by torsion around the C-C axis, or by
complete dissociation, leading to both CH2 fragments in
the same electronic state, either 3B1 or

1A1. As we have not

Fig. 4. Dissociation energies of CH3NO, obtained with the
W-selection procedure, versus the EN square norm of the ®rst-
order correction to the wave function for the undissociated
molecule �req�

Fig. 5. As for Fig. 4, but with the aimed selection procedure
(option 3, see text)

Fig. 6. Dissociation energies of CH3N@NCH3, obtained with the
W-selection procedure, versus the EN square norm of the ®rst-order
correction to the wave function for the undissociated molecule �req�

Fig. 7. As for Fig. 6, but with the aimed selection procedure
(option 1, see text)
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optimized the geometries of transition state and dissoci-
ated fragments, we cannot expect a good agreement with
the experimental data. For all calculations we have adopted
the same internal coordinates [7, 24] (except for the torsion
angle at the twisted geometry and RCC at dissociation):
RCC � 1:330 AÊ , RCH � 1:076 AÊ , �CCH � 121:7�.

The split-valence plus polarization basis set of Saxe
et al. [24] was used. The MOs were obtained by CAS
calculations, with two electrons and two active MOs for
the equilibrium and twisted geometries, and with four
electrons and four MOs for dissociation. The corre-
sponding CI spaces were taken as starting S spaces for
the CIPSI calculations.

The results are summarized in Tables 2 and 3 and the
energy convergence with increasing NS is shown in
Figs. 8 and 9. There are several analogies with the single-
bond dissociations of the previous section. The
W-selection procedure generates S spaces which are
variationally better for some geometries than for others,
as can be seen by comparing the r values and the zero-
order energies. The smallest r's and the steepest lowering
of the variational energy are obtained for the two CH2

fragments, with a good balance between the triplet and
the singlet states. This is followed by the equilibrium
geometry, while the largest r's are obtained for the
twisted structure. Therefore, at zero-order, the dissoci-
ation energies are too small, and the activation energy
required for torsion is too large. These drawbacks dis-
appear when we make use of aimed selection.

The di�erences are not dramatic as in the case of
CH3NO; therefore, the EN and MPB results obtained
with W-selection are only slightly less stable than with
aimed selection (see Figs. 8 and 9). Also in this case we
see that the number of determinants is not a good guide
to assess the quality of the S space and to set up a
balanced treatment of di�erent geometries.

Finally, we notice that the excitation energy of CH2,
DE�1A1 ÿ 3B1�, can be computed as half of the di�erence
between the two dissociation limits. Because W-selection,
as well as aimed selection, yields a balanced treatment
of the two states (see the r values in Table 3), all

Table 2. CIPSI results for double-bond twisting in CH2@CH2. The
headings eq and tw refer to the ground-state equilibrium geometry
and the 90° twisted geometry, respectively. The heading var refers
to variational, i.e. zero-order results. Energy di�erences DE are in
kcal/mol

W- selection

g NS r, EN DE

eq tw eq tw var EN MPB

± 2 2 0.1393 0.1339 75.8 80.7 72.6
0.0200 41 24 0.1085 0.1180 84.2 75.1 72.4
0.0150 78 84 0.0943 0.1066 86.3 73.7 72.0
0.0120 131 186 0.0829 0.0957 87.3 73.5 71.9
0.0100 214 368 0.0717 0.0817 86.3 74.7 72.8
0.0080 361 712 0.0597 0.0666 84.1 75.7 73.4
0.0050 945 1904 0.0394 0.0445 84.0 76.3 74.3
0.0040 1389 2852 0.0317 0.0368 84.8 76.1 74.4

Aimed selection

r�t�
NS r, EN DE

eq tw eq tw var EN MPB

± 2 2 0.1393 0.0000 75.8 80.7 72.6
0.1200 29 24 0.1155 0.1180 79.2 76.9 72.1
0.1100 41 78 0.1080 0.1080 77.3 77.1 71.8
0.1000 68 160 0.0973 0.0994 77.0 75.6 70.8
0.0800 171 468 0.0783 0.0773 73.9 76.7 71.5
0.0700 261 732 0.0676 0.0664 75.0 76.8 72.4
0.0500 624 1681 0.0482 0.0473 75.2 76.3 72.8
0.0400 982 2660 0.0390 0.0383 75.1 76.2 73.2

Table 3. CIPSI results for the dissociation of CH2@CH2 into two
CH2 fragments, both in the

3B1 or in the
1A1 state. The headings eq,

trip and sing refer to the ground-state equilibrium geometry, to two

dissociated triplets and to two dissociated singlets, respectively. The
heading var refers to variational, i.e. zero-order results. Dissocia-
tion energies DE�trip� and DE�sing� are in kcal/mol.

W- selection

g NS r, EN DE�trip� DE�sing�
eq trip sing eq trip sing var EN MPB var EN MPB

± 2 6 20 0.1393 0.0951 0.0855 144.8 194.8 187.2 172.9 229.8 218.7
0.0110 213 495 162 0.0724 0.0345 0.0311 123.4 185.5 177.0 150.4 215.0 205.4
0.0075 396 864 272 0.0576 0.0257 0.0229 126.3 182.3 175.8 151.4 210.4 202.6
0.0050 920 1616 482 0.0398 0.0172 0.0162 134.9 180.6 176.4 162.3 208.7 203.9
0.0037 1553 2448 742 0.0296 0.0127 0.0124 142.2 179.7 176.7 170.2 207.8 204.4
0.0020 2945 4918 1589 0.0193 0.0074 0.0072 149.6 178.7 176.7 177.8 206.5 204.3

Aimed selection

r�t� NS r, EN DE�trip� DE�sing�
eq trip sing eq trip sing var EN MPB var EN MPB

± 2 6 20 0.1393 0.0951 0.0855 144.8 194.8 187.2 172.9 229.8 218.7
0.0800 211 34 24 0.0742 0.0775 0.0785 177.5 181.3 186.4 215.2 213.2 219.3
0.0600 376 106 39 0.0591 0.0590 0.0587 173.8 185.1 185.1 211.4 214.5 217.7
0.0400 941 362 100 0.0395 0.0401 0.0399 176.0 182.3 184.4 210.3 214.5 214.5
0.0300 1545 644 174 0.0299 0.0302 0.0303 176.6 183.2 184.0 209.3 213.2 213.7
0.0200 2762 1236 352 0.0204 0.0209 0.0205 178.6 182.4 182.7 209.9 212.5 212.5
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series of DE�1A1 ÿ 3B1� values are rapidly stabilized
within 1 kcal/mol.

3.3 Triple-bond dissociation: 2N2

The N2 system o�ers an example of triple-bond disso-
ciation. The basis set and MOs are the same as in the
®rst paper of this series [11]. They were chosen because
full CI results [25] are available for comparison.
However, the full CI was limited to six electrons, while
the 1s and 2s orbitals were frozen; with this restriction,
both the W-selection and aimed selection results were
very close to the full CI ones, even in the ®rst steps of the
iterative calculation.

In order to perform a more demanding test, we have
included the 2s orbitals in the CI, and we have run two
series of calculations: one for the N2 ! 2N reaction and
one for a system composed of two non-interacting N2

molecules (or four N atoms): 2N2 ! 4N. The degenerate
orbitals were localized on each N2 molecule or N atom as
appropriate. Of course, the double N2 energies should be
twice the corresponding ones for single N2, so in tables
and ®gures we give the double N2 values divided by two.
The single N2 system is still quite manageable, so that we
can estimate the full CI limit from the EN results ob-
tained for small r (see Fig. 10). We get EFCI �ÿ109:2765
a.u. for N2 (RNN � 2:10 bohr) and EFCI �ÿ108:9657 a.u.
for two N atoms. The latter result is con®rmed by an
extensive calculation on the single N atom, yielding
2EFCI � ÿ108:965688 a.u. (the horizontal line in Fig. 10).
The full CI-dissociation energy is De � 195:0 kcal/mol.

Fig. 8. Dissociation energy and barrier for the twisting of the
CH2@CH2 double bond (unoptimized geometries, see text), versus
the EN square norm of the ®rst-order correction to the wave
function using the W-selection procedure

Fig. 9. As for Fig. 8, but with the aimed selection procedure
(option 3, see text)

Table 4. CIPSI results for triple-bond dissociation. De is computed as half of the di�erence between the energy of four N atoms and that of
two non-interacting N2 molecules. DDe errors with respect to the full CI result (195.0 kcal/mol) are given

W- selection aimed selection

NS
2N2/4N

r, EN
2N2/4N

DDe NS
2N2/4N

r, EN
2N2/4N

DDe

var EN MPB var EN MPB

17/1 0.1821/0.1736 )36.8 )2.6 9.0 17/1 0.1821/0.1736 )36.8 )2.6 9.0
31/61 0.1311/0.0471 )79.5 2.7 )1.8 27/10 0.1396/0.1426 )30.4 )8.0 )9.1

173/46 0.0757/0.0674 )33.3 )4.3 )7.2
229/149 0.0665/0.0142 )66.1 )4.3 )5.4

271/51 0.0601/0.0595 )24.8 )4.2 )5.9
381/193 0.0500/0.0089 )55.6 )5.0 )4.7

457/63 0.0452/0.0454 )18.9 )3.8 )5.1
615/197 0.0386/0.0087 )43.4 )4.2 )7.1
2418/369 0.0170/0.0063 )19.5 )2.3 )3.9 2376/142 0.0173/0.0154 )9.8 )1.7 )2.8
4542/1651 0.0129/0.0041 )17.2 )1.9 )3.5 3970/168 0.0137/0.0116 )9.3 )1.6 )2.8
6266/2307 0.0114/0.0033 )16.2 )1.9 )3.2 5572/185 0.0120/0.0097 )9.0 )1.6 )2.5
9806/4803 0.0097/0.0020 )15.7 )1.8 )3.1 7728/208 0.0106/0.0083 )8.4 )1.5 )2.3
15198/6651 0.0083/0.0015 )14.4 )1.7 )2.9

49726/1503 0.0055/0.0043 )4.5 )0.9 )1.3
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Table 4 shows the convergence of the CIPSI com-
puted De to the full CI value, obtained with the
W-selection and aimed selection procedures, for the
double N2 system. These are several pairs of CIPSI
calculations, belonging to either selection sequence, with
approximately the same dimension of S and the same r
for the 2N2 system. These results appear in the same line
of the table, in order to facilitate the comparison. We
®nd that the aimed selection EN and MPB results are
only slightly better than W-selection ones; however, the
variational energy di�erences show, also in this case, an
unbalanced treatment of the molecule versus the sepa-
rated atoms when W-selection is employed. Notice that,
in order to obtain approximately the same r values, the
dimension of S in the atomic calculations must be kept
up to 40 times smaller than in the molecular ones. At
dissociation, W-selection yields r values much smaller
than at the equilibrium distance.

Figure 10 shows the convergence of the single and
double N2 total energies versus expansion of theS space
by the aimed selection procedure. This comparison il-
lustrates the important question of size consistency. Of
course, the individual selection of determinants, no
matter which criterion is employed, cannot produce fully
size-consistent zero-order spaces, i.e. direct products of
determinantal subspaces de®ned for the separated sub-
systems.

Ideally the square norm of the perturbative correction
should increase linearly with the number of subsystems.
Notice that (approximately) the same r value may be
obtained with di�erent S spaces, depending on the
ranking of determinants in the selection procedure.
However, a meaningful comparison of the two series of
calculations is obtained by plotting half of the double N2

energies versus half of the corresponding r values. Both
variational and perturbative results show that this cri-
terion is quite adequate, not only near to the full CI
limit, but also in the ®rst steps of the selection procedure.
In other words, when the appropriate target values of r
are chosen, the aimed selection procedure can ensure an
approximate size consistency at all levels. It may be
noted that the MPB results are apparently closer to
perfect size consistency than the EN ones [9], while the
latter show a faster overall convergence [7].

3.4 Excitation energy: Cd atom

We have considered the ground state �5s1S� and the ®rst
excited state �5p3P � of the cadmium atom. The computed
transition energy is quite sensitive to the quality of the CI
treatment, because the correlation energy of the excited
state is smaller than that of the ground state [26]. We have
employed a �4s4p4d2f � basis called E, which we partially
optimized in our previous work [26]. In order to improve
the CI convergence, we have used a state-speci®c set of
orbitals obtained from CASSCF calculations (two elec-
trons in eight orbitals, two s and two p shells).

The results obtained with W-selection and aimed se-
lection are shown in Figs. 11 and 12, respectively. It is
again clear that the convergence of the EN and MPB
transition energies is slightly more stable with aimed

selection. On the other hand, the variational results
obtained with the two selection procedures are strikingly
di�erent: W-selection tends to favour the excited state,
by selecting too many determinants for it, in comparison
with the ground state. This bias in favour of the open-
shell state bears some analogy with the behaviour found
in the preceding examples of bond dissociation.

4 Conclusions

In this paper we have addressed the problem of the
selection of Slater determinants belonging to the zero-
order space in a multi-reference perturbation CI calcu-
lation. In particular, we have shown the importance of
de®ning zero-order spaces of uniform quality for
di�erent electronic states and nuclear geometries. Our

Fig. 10. Convergence of the CIPSI results to the full CI energy of
N2 and 2N. Rhombs Total energy of one N2 molecule and two N
atoms (horizontal axis EN square norm of the ®rst-order correction
to the wave function, r). Stars Half of the total energy of two non-
interacting N2 molecules and of four N atoms (horizontal axis, r=2,
see text)
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study focusses on the CIPSI algorithm, which allows
stepwise expansion of the zero-order space by individual
selection of the determinants, up to convergence of the
computed properties.

We have chosen the square norm of the ®rst-order
correction of the wave function, r, as a numerical pa-
rameter expressing the quality of the zero-order spaceS.
We have then set up an expert system for multi-reference
CI, which selects determinants according to the results
obtained in a previous calculation and expands the S
space to be used in the next one. The quality of S is
controlled, so as to conform to a preset standard in the
form of a target r value, common to all geometries and
states.

The new procedure leads to a much faster conver-
gence of computed energy di�erences, with respect to the
selection algorithm adopted so far. The most dramatic
improvements concern the dissociation energies deter-
mined at the variational level (zero-order). In fact, we
show that an individual selection not driven by a
criterion of uniformity may lead to very unbalanced
compositions of the S spaces for di�erent nuclear
geometries and, hence, to unacceptable biases in the
computed energies. Adding the second-order perturbat-
ive contributions usually yields reasonable results, but
the importance of a good starting point (zero-order wave
functions and energies) cannot be neglected.

Notice that most multi-reference CI methods adopt
more rigid de®nitions of the zero-order space: SBCAS,
SB single and double excitations, etc. Such restrictions
in the choice ofS are introduced to enable very e�cient
implementations rather than to satisfy a uniformity
requirement. In fact, an S space which contains for-
mally the same con®gurations at di�erent geometries is
not necessarily well balanced: our test calculations show
that the appropriate dimensions ofS may change by an
order of magnitude according to the nuclear geometry.
The issue we have brought out in this paper is therefore
quite general, in that it concerns all multi-reference
methods. Our approach could be pro®tably conjugated
with recent proposals in the ®eld of multi-reference CI
[3, 27, 28], for instance in the selection of hierachically
ordered subspaces, to be treated with di�erent algo-
rithms of increasing accuracy.
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